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COUPLED BENDING TORSIONAL VIBRATION
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A ®nite element formulation of the dynamic model of a rotor-bearing system
is presented. The elastodynamic model of coupled bending and torsional
motions of the rotating shaft is derived using the Lagrangian approach. The
model accounts for the gyroscopic e�ects as well as the inertia coupling
between bending and torsional deformations. A reduced order model is
obtained using modal truncation. The modal transformation invokes the
complex mode shapes of a general rotor system with gyroscopic e�ects and
anisotropic bearings. The reduced modal form of the dynamic model is
numerically simulated, and the dynamic responses due to di�erent excitations
are obtained.
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1. INTRODUCTION

Rotating machines are extensively used in diverse engineering applications, such
as power stations, marine propulsion systems, aircraft engines, machine tools,
automobiles, medical equipment and household accessories. The dynamic
modelling of such systems is essential to understand their dynamic behavior and
the associated vibration problems.
Although early dynamic models of rotor systems were formulated either

analytically [1] or using the transfer matrix approach [2], the potential of the
powerful ®nite element technique was recognized at a very early stage [3]. Nelson
and McVaugh [4] and Zorzi and Nelson [5] improved upon the model presented
in reference [3] by including secondary effects such as rotary inertia, internal
damping and axial torque. Several ®nite element formulations using a uniform
shaft element [6, 7] or tapered shaft element [8±11] were introduced to evaluate
the modal characteristics of rotor-bearing systems.
For dynamic response analysis, a linearized ®nite element model was

employed to establish a control scheme for rotor systems [12]. The ®nite element
method was also applied to a complex rotor system to evaluate its vibration
response due to ¯uid forces [13], and gyroscopic moments [14]. General purpose
®nite element codes [15] were adapted to simulate the dynamics of some complex
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rotor systems. The coupling between the bending and torsional deformations,
however, was not included in the previously cited dynamic response analyses.
All of the reported ®nite element dynamic analysis studies were based on the

utilization of the nodal or physical co-ordinates. The use of nodal co-ordinates,
however, results in a large dimensionality, thus inhibiting the ef®ciency of the
numerical solution. Although reduced order ®nite element models using modal
co-ordinates were introduced for ¯exible multibody dynamic analysis [16±18],
they were not adopted for dynamic analysis of rotor-bearing systems.
Kane and Torby [19] referred to the different methods for reducing the size of

the ®nite element model while preserving the lower frequencies. They introduced
a modal transformation that resulted in reduced mass and stiffness matrices, and
showed that the reduced model preserves the same modal characteristics of the
original ®nite element model. Their work, however, was not carried out to the
dynamic response analysis stage.
In this paper, a ®nite element elastodynamic model of a rotor-bearing system

is formulated. The model accounts for the gyroscopic effects, as well as the
coupling between ¯exural and torsional deformations. In addition, the
formulation permits the use of either a uniform or tapered shaft element, and
general anisotropic bearings. A modal transformation utilizing the complex
mode shapes is established, and a reduced order model is obtained. The reduced
modal form of the equations of motion is numerically generated and integrated
forward in time. The dynamic response is obtained for some numerical examples
to demonstrate the validity and ef®ciency of the developed model.

2. THE ELASTODYNAMIC MODEL OF THE ROTOR

Two reference frames are employed to describe the motion of the rotor
system. One is the ®xed reference XYZ, and the other is a rotating reference xyz.
The X- and x-axes are colinear and coincident with the undeformed rotor
centerline. The angular displacement between the two reference frames is y(t),
and the rotational speed of the shaft is de®ned by _y�t�.
In this formulation, it is assumed that: (1) the material of the rotor is elastic,

homogeneous and isotropic; (2) the plane cross-sections initially perpendicular to
the neutral axis of the rotor remain plane, but no longer perpendicular to the
neutral axis during bending; (3) the de¯ection of the rotor is produced by the
displacement of points of the center line; (4) the axial motion of the rotor is
small and can be neglected; (5) the shaft is ¯exible, while disks are treated as
rigid; and (6) internal damping and aerodynamic forces are neglected.

2.1. THE ELEMENTAL CO-ORDINATE SYSTEM OF THE SHAFT

The ®nite element method is used to model the shaft. Referring to Figure 1, let
XiYiZi be a Cartesian co-ordinate system with its origin ®xed to the undeformed
shaft element. xiyizi is a Cartesian co-ordinate system after the deformation of
the shaft element. The xiyizi co-ordinate system is rotated with respect to the
XiYiZi co-ordinate system through a set of angles f, b and g, as shown in Figure
2. To describe the general orientation of any cross-section of the shaft element,
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one ®rst rotates it by an angle (y+f) around the Xi-axis, then an angle b
around the new yi-axis (denoted by yi2), and ®nally by an angle g around the
®nal zi-axis. The instantaneous angular velocity vector of the xiyizi frame may be
expressed as

�o � � _y� _f�̂I� _b̂j2 � _gk̂, �1�
where Î, ĵ2 and k̂ are unit vectors along the axes X, yi2 and zi.

2.2. KINETIC ENERGY OF THE SHAFT

Referring to Figure 1, let qi be any point in the undeformed shaft element i.
Point pi is de®ned by the vector �ro, with respect to the XiYIZi co-ordinate system.
Point qi is then transformed to point pi in the deformed state of the shaft
element. The location of pi with respect to the XiYIZi co-ordinate system is given
by the vector �r, and its global position is de®ned by the vector �rp, where, for
simplicity of notation, the superscript i is dropped when writing the position
vector. One can write the position vector �rp of point p

i as

�rp � �R� �r � �R� �ro � �u, �2�
where �R de®nes the location of the origin of the XiYIZi system with respect to
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Figure 1. Generalized co-ordinates of the ith element.
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the global co-ordinate system XYZ and �u represents the deformation vector of
point pi. Differentiating �rp with respect to time and using the ®nite element
analysis, the velocity of point pi can be written in matrix form as

d�rp
dt
� �Nv�f _eg � �~ooo�frpg � �Nv ~ooo� _e

rp

� �
, �3�

where {e} is the vector of nodal co-ordinates of the ith shaft element, and [Nv] is
the translation shape function. The kinetic energy of the element is obtained by
integrating the kinetic energy of an in®nitesimal volume at point p over the
volume V. This can be written as

T � 1

2

�
V

m
d�rp
dt

� �t d�rp
dt

� �
dV

� 1

2

�
V

m�f _egt�Nv�t�Nv�f _eg � f_egt�Nv�t�~ooo�frpg

� frpgt�~ooo�t�Nv�f _eg � frpgt�~ooo�t�~ooo�frpg� dV, �4�
where m is the mass density of the shaft element number i. It is noted that
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Figure 2. Cross-section rotation angles.
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although we are describing element number i, the superscript i is dropped. The
®rst term in equation (4) gives the kinetic energy due to translation, the second
and third terms are identically zero if moments of intertia are calculated with
respect to the center of mass of the element. The last term gives the kinetic
energy due to rotational effects that include gyroscopic moments. Equation (4)
can be expressed as

T � 1

2
f_egt�M�f _eg � 1

2
C� _y2 ÿ _yf_egt�G��feg, �5�

where

�M� � �Mt� � �Mr� � �Mf� ÿ 2�Me�
is the composite mass matrix. The matrix [Me] represents the coupling between
torsional and transverse vibration, and is time dependent because it is a function
of the nodal co-ordinates {e}. Since the coupling terms which are time dependent
are present in the inertia matrix, the coupling is called inertial coupling. The
constituent matrices of [M] and other invariants in equation (5) are de®ned as

�Mt� �
�l
0

�Nv�tmA�Nv� dx, �Mr� �
�l
0

�Nb�tID�Nb� dx,

�Mf� �
�l
0

�Nf�tIP�Nf� dx, �G�� �
�l
0

�Nbg�tIP�Nbb� dx, C� �
�l
0

IP dx,

�Me� �
�l
0

IP��Nf�t�Nbg�feg�Nbb� ÿ �Nf�t�Nbb�feg�Nbg�� dx,

where A(x) is the cross-sectional area, l is the length, ID is the diametral mass
moment of inertia, and IP is the polar mass moment of inertia of the shaft
element. The matrix

�Nb� � Nbb

Nbg

� �
represents rotational shape functions and [Nf] of torsional shape functions. The
shape functions and the non-zero elements of the time dependent matrix [Me] are
given in the Appendix.

2.3. STRAIN ENERGY OF THE SHAFT

Neglecting axial deformation, the potential energy of the shaft element can be
written as

U � 1

2

�l
0

EI
@b
@x

� �2

� @g
@x

� �2
( )

dx� 1

2

�l
0

kGA
@v

@x
ÿ g

� �2

� @w

@x
� b

� �2
( )

dx

� 1

2

�l
0

GJ
@f
@x

� �2

dx, �6�
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where v and w are ¯exural deformations in Y and Z-directions, while f, b and g
are small rotations about the X-, j2- and k-axes, respectively, E is the modulus of
elasticity, G is the shear modulus of the shaft material, I is the second moment of
cross-sectional area, J is the polar moment of inertia and k is the shear
correction factor. Equation (6) can be written in matrix form as

U � 1

2
fegt�K�feg: �7�

The matrix [K] is the composite element stiffness matrix given by

�K� � �Ke� � �Ks� � �Kf�,
where [Ke] is the elastic stiffness matrix, [Ks] is the shear stiffness matrix and [Kf]
is the torsional stiffness matrix. These are de®ned as

�Ke� �
�l
0

@

@x
�Nb�

� �t

EI
@

@x
�Nb�

� �
dx, �Kf� �

�l
0

@

@x
�Nf�

� �t

GJ
@

@x
�Nf�

� �
dx,

�Ks� �
�l
0

kGA

@

@x
�Nvv� ÿ �Nbg�

@

@x
�Nvw� � �Nbb�

2664
3775
t @

@x
�Nvv� ÿ �Nbg�

@

@x
�Nvw� � �Nbb�

2664
3775 dx:

Here, the different shape functions are de®ned by the following relationships:

v

w

n o
� �Nv�feg � �Nvv�

�Nvw�
� �

feg,

b
g

� �
� �Nb�feg � �Nbb�

�Nbg�
� �

feg,

ffg � �Nf�feg:

2.4. THE ROTOR-BEARING SYSTEM

The rotor-bearing system consists of a rotating shaft, disks and bearings. The
rotating shaft is divided into number of ®nite elements. The bearings can be
¯exible and damped. Isotropic as well as anisotropic bearings can be
accommodated. The disks are considered to be rigid. Now the equation of
motion of each part of the rotor-bearing system will be derived separately.

2.4.1. Equation of motion of the shaft element

Using the Lagrangian approach, the equation of motion can be derived as

�M�f�eg � _y�G�f _eg � �K�feg � fQg, �8�
where [M] is the composite element mass matrix, [G]= [G*]ÿ [G*]t is the element
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gyroscopic matrix, [K] is the composite element stiffness matrix and {Q} is a
vector of generalized forces.

2.4.2. The disk

The equation of motion of the rigid disk is derived as

�Md�f�eg � _y�Gd�f _eg � fQdg, �9�
where [Md] is the disk mass matrix, [Gd] is the gyroscopic matrix and {Qd} is the
vector of generalized forces of the disk.

2.4.3. The bearings

The generalized forces acting on the bearings can be written as

�Cb�f _eg � �Kb�feg � fQbg, �10�
where [Cb] is the bearing damping matrix, [Kb] is the bearing stiffness matrix and
{Qb} is the vector of generalized forces of the bearings.
Now, the equation of motion of a rotor-bearing system can be written in the

assembled general form as

� �M�f��eg � ��C�f�_eg � ��K�f�eg � f�Qg, �11�
where � �M� is the assembled mass matrix of the system taking into account the
disk mass matrix at the corresponding locations. Similarly ��C� is the assembled
gyroscopic matrix, ��K� is the assembled stiffness matrix and f�Qg is the assembled
generalized force vector. The vector f�eg is the assembled vector of nodal co-
ordinates of the whole system.

3. MODAL TRUNCATION OF THE ELASTODYNAMIC EQUATIONS

The elastodynamic model of equation (11) can be represented in the state±
space form as

0 ÿ �M
�M �C

� � ��e
�e_ee

� �
� �M 0

0 �K

� � �_e

�e

�
� 0

�Q

� �
:

�
�12�

Or simply as

�A�f _qg � �B�fqg � ffg, �13�
where fqg � ff�_egt, f�egtgt. One can write the following two homogeneous adjoint
equations

�A�f _qg � �B�fqg � f0g and �A�tf _qgt � �B�tfqgt � f0g: �14, 15�
Let [R] and [L] denote the complex modal matrices of the differential operators
of equations (14) and (15), respectively [20]. Introducing the transformation

fqg � �R�fug, �16�
where {u} is the vector of modal co-ordinates. If only a subset of signi®cant
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modes are to be retained, the truncated modal form of the equations of motion
can be written as

�L�t�A��R�f _ug � �L�t�B��R�fug � �L�tffg; �17�
Or, simply as

��A�f _ug � ��B�fug � �L�tffg, �18�
where [R] and [L] contain only those complex eigenvectors that represent a
subset of selected modes.
In the modal transformation of equation (18), the eigenvectors were used with

their full length. However, similar modal transformations can be established
using a subset of eigenvectors with truncated length [19]. In this regard, the
modal co-ordinate vector {q} can be partitioned as

fqg � qr
qo

� �
� Rr

Ro

� �
fug, �19�

where {qr} is the retained subset of nodal co-ordinates, and {qo} is the omitted
subset of nodal co-ordinates. The modal co-ordinate vector can be expressed in
terms of the retained subset of nodal co-ordinates as

fug � ��Rr�t�Rr��ÿ1�Rr�tfqrg: �20�
Utilizing equations (19) and (20) one can write

fqog � �Ro���Rr�t�Rr��ÿ1�Rr�tfqrg � �QR�fqrg: �21�
Similarly, for the left-hand modal transformation [L], one gets

fqog � �Lo���Lr�t�Lr��ÿ1�Lr�tfqrg � �QL�fqrg: �22�
Now, the following relations can be established:

fRg � �HR�fRrg, fLg � �HL�fLrg, �23, 24�
where

�HR� � I

GR

� �
, �HL� � I

GL

� �
:

Substituting equations (23) and (24) into equation (17) one gets,

�Lr�t�HL�t�A��HR��Rr�f _ug � �Lr�t�HL�t�B��HR��Rr�fug � �Lr�tffg �25�
or

�Lr�t�Ar��Rr�f _ug � �Lr�t�Br��Rr�fug � �Lr�tffg, �26�
where the reduced matrices [Ar] and [Br] are those used by Kane and Torby [19]
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to evaluate the modal characteristics of a rotating shaft. Equation (26) can be
written as

��Ar�f _ug � ��Br�fug � �L�tffg: �27�
It is worth noting that the self adjoint operator associated with the reduced

diagonal matrices ��A� and ��B� of equation (7) or ��Ar� and ��Br� of equation (27) or
the reduced nondiagonal matrices [Ar] and [Br] of equation (26) have the same
eigenvalues as those produced by the original full size matrices [A] and [B] of
equation (13). Now, for dynamic response solutions, one can use either the
reduced model of equation (18) or the reduced model of equation (27). However
equation (27) may be preferred for experimentally determined modal data of
large scale problems.

4. RESULTS AND DISCUSSION

Three numerical examples are simulated to study the dynamic response of
different rotor systems. As a ®rst example, a uniform steel shaft rotating at
400 rad/s and supported at the two ends by rigid bearings (simply supported)
is considered. The shaft is of diameter d=10�16 cm and length l=127 cm.
The density and elastic modulus of the shaft material are r=0�78336104 kg/
m3 and E=0�206861012 N/m2, respectively. This particular example is
selected to validate the results from the dynamic analysis code developed
during this study by comparing with the results from an established
commercially available ®nite element software ANSYS. The rotating shaft is
divided into six equal ®nite elements and is excited by a unit step force in the
Y direction at the midpoint of the shaft. The response of the system is
computed using both the programs. Figure 3 gives a comparison of the
de¯ection in the Y direction of the midpoint of the rotating shaft, when the
response is computed using (a) (62662) full dimension state space matrices
with the currently developed code, (b) (464) reduced dimension state space
matrices with the currently developed code, and (c) using full dimension
matrices with ANSYS software. The response of the shaft using the dynamic
analysis code developed during this study is agreeable with the response
computed using ANSYS software. Hence, the developed dynamic analysis
code using the complex modal reduction technique is validated.
As a second example, the rotating shaft studied in the ®rst example with the

same geometry, rotating speed and material constants is used, but is supported
at the two ends by ¯exible damped bearings (Figure 4). The stiffness coef®cients
of the bearings are Kyy=Kzz=1�75136107 N/m, Kyz=Kzy=ÿ2�9176106 N/m
and the damping coef®cients are Cyy=Czz=1�7526103 N s/m and
Cyz=Czy=0�0. The shaft is divided into six equal ®nite elements. The modal
characteristics of the rotor bearing system are generated utilizing the full-
dimension matrices [A], [B] of equation (13), and compared to those of reference
[21] in Table 1. For the purpose of this comparison, the shaft has been divided
into ®ve equal ®nite beam elements.
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The modal characteristics are then reproduced using the reduced-order
modal matrices ��A�, ��B� of equation (18) and [Ar], [Br] of equation (26),
respectively, to show their validity in preserving the signi®cant modes of the
original system. In this case, the shaft has been modeled by six ®nite elements,
and modal transformations were established to preserve the lower dynamics of
the ®rst forward and backward ¯exural modes, as well as the ®rst torsional
mode. Therefore, the (70670) full dimension state space matrices have been
reduced to (565) modal matrices, as tabulated in Table 2. The eigenvalue
solutions of the full-dimension and the reduced-dimension matrices are
presented in Table 3.
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To demonstrate the capability of the developed model, the time-response of
the rotor due to a unit force in the Y direction, appled at the midpoint of the
shaft, is computed. In this simulation, the time response is expressed as a non-
dimensional generalized displacement parameter Z plotted against time. For

TABLE 1

Damped frequencies of the rotor system of example 2

Reference [21] Present workz�������������������}|�������������������{ z�������������������}|�������������������{
Mode od (rad/s) d od (rad/s) d

1B 491�90 0�1208 490�91 0�1200
1F 544�79 0�0826 543�48 0�0819
2B 1005�0 0�3553 1003�71 0�3538
2F 1174�2 0�2879 1172�04 0�2862
3B 2171�7 0�2715 2161�16 0�2715
3F 2312�7 0�2571 2301�99 0�2567
4B 5038�7 0�1122 4944�85 0�1143
4F 5107�4 0�1134 5013�39 0�1156
5B ± ± 9250�56 0�0586
5F ± ± 9308�74 0�059

TABLE 2

The reduced matrices

(a) The reduced matrices of equation (18):

��A� � diag

ÿ6�981ÿ 10�436i,
ÿ6�981� 10�436i,
ÿ3�793� 9�22i,
9�918ÿ 1�017i,
0�024ÿ 0�0065i

266664
377775, ��B� � diag

0�215ÿ 0�0138i,
0�0226� 0�012i,
ÿ0�0168ÿ 0�0072i,
ÿ0�0021ÿ 0�0182i,

ÿ8�25

266664
377775

(b) The reduced matrices of equation (26):

�Ar� �

ÿ75 184�03 33 676�71 8966�15 30 379�51 0
19 804�16 ÿ75 183�01 ÿ31 440�59 ÿ2899�01 0
2898�65 ÿ30 379�39 ÿ13 057�27 1058�15 0

31 439�97 ÿ8964�90 ÿ1513�79 ÿ13 056�92 0
0 0 0 0 1�65610ÿ6

266664
377775

�Br� �

13�45 ÿ2�80 0�08 ÿ2�51 0
ÿ0�68 13�45 2�50 ÿ0�65 0
0�65 2�51 ÿ0�29 ÿ0�19 0
ÿ2�50 ÿ0�08 ÿ0�09 ÿ0�29 0

0 0 0 0 0

266664
377775
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transverse de¯ections in the Y and Z directions, the non-dimensional generalized
displacement parameters are de®ned as

Zy �
v

D
and Zz �

w

D
, �28�

where v is the de¯ection in the Y direction, w is the de¯ection in the Z direction

TABLE 3

The comparison of eigenvalues of the rotor system of example 2

Eigenvaluesz��������������������������������������������������������������}|��������������������������������������������������������������{
No

Using matrices of
equation (13)

Using matrices of
equation (18)

Using matrices of
equation (26)

1 ÿ9�382 490�86iy ÿ9�382 490�86i ÿ9�382 490�86i
2 ÿ7�082 543�37iy ÿ7�082 543�37i ÿ7�082 543�37i
3 ÿ56�472 1003�44i 0+7840�80i 0+7840�80i
4 ÿ53�332 1171�68i
5 ÿ93�122 2159�19i
6 ÿ93�732 2300�10i
7 ÿ88�992 4930�76i
8 ÿ91�182 4998�76i
9 02 7840�80iyz

y Selected in reduced order equation.
z First torsional natural frequency.
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Figure 5. De¯ection due to step force in the Y direction at the midpoint of the shaft. Ð , Full
order model; ± ± ± , 5th order reduced model.
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and D is the static de¯ection at the point of application of force in the direction
of the force. For the torsional de¯ection the non-dimensional generalized
displacement parameter is de®ned as

Zf �
f

2D=d
, �29�

where f is the torsional deformation and d is the diameter of the shaft at the
point of measurement. The transverse and torsional time-responses of the
midpoint are shown, respectively, in Figures 5 and 6. In Figure 5, the response
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Figure 6. De¯ection due to step force in the Y direction at the midpoint of the shaft.
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Figure 7. Con®guration of multi-stepped rotor-bearing system.
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of the full order model is compared to the response of the reduced model of
order of ®ve, which shows good agreement with the full order model. It is worth
mentioning that the torsional vibrations shown in Figure 6 are induced mainly
by the inertia coupling between ¯exural and torsional vibrations. Since there is
no damping on either the torsional or rotational motions, the torsional
vibrations, unlike ¯exural vibrations, will not die away.
As a third example, the rotor-bearing system studied by Nelson and McVaugh

[4] is used to illustrate the merits of the present mathematical formulation for the
determination of natural frequencies and time responses. The con®guration of
the rotor system is shown in Figure 7 and the corresponding data are given in
reference [21]. The rotor-bearing system is rotating at a constant speed of
O=2000 rad/s. The reduced matrices are obtained by selecting the
corresponding modes of the ®rst transverse backward and forward frequencies
and the ®rst torsional frequency, thus replacing the (1906190) full-dimension
matrices by reduced ones of order (565). The rotor system is excited by a unit
force acting in the Y direction on the disk which is located at the ®fth node. The
de¯ection in the Y direction at the disk location is shown in Figure 8, while the
de¯ection in the Z direction at the disk due to the same unit force in the Y
direction is shown in Figure 9. The de¯ections obtained from the full order
model are compared to the de¯ection obtained from the reduced model of order
®ve and found to be in good agreement. The de¯ection in the Z direction due to
the unit force in the Y direction is induced because of the coupling between
¯exural deformations in the Y and Z directions. It can be noted that the points
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Figure 8. De¯ection due to step force in the Y direction at the disk. Ð , Full order model;
± ± ± , 5th order reduced model.
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of small de¯ections in the Y direction correspond, in general, to the points of
large de¯ections in the Z direction and vice-versa. In Figure 10, the torsional
de¯ection at ST1 due to the unit force in the Y direction is shown. This torsional
de¯ection is due to the inertia coupling of the ¯exural and torsional vibrations.
In this simulation, the amplitude of the torsional de¯ection does not diminish to
zero because no damping is provided for the torsional motion of the rotor-
bearing system. The numerical examples presented here demonstrate the
capability of the solution scheme developed in simulating the rotor's time
response due to a general forcing function. The developed scheme may,
therefore, be utilized in studying time response due to shock loading conditions
as well as any type of lateral or torsional control forces.

5. CONCLUSIONS

A ®nite element elastodynamic model of a rotor-bearing system is formulated.
The model accounts for the gyroscopic effects, as well as the coupling between
¯exural and torsional deformations. In addition, the formulation permits the use
of either a uniform or tapered shaft element, and a general anisotropic bearing.
The ®nite element model accounts for rotary inertia and shear deformations. The
full dimension equations of motion of the original system have been reduced by
invoking a modal transformation that utilizes the complex mode shapes of the
rotor system. The reduced order state space matrices are shown to preserve the
selected signi®cant modes of the original system. In addition, the reduced order
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Figure 9. De¯ection due to step force in the Y direction at the disk. Ð , Full order model;
± ± ± , 5th order reduced model.
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modal form of the equations of motion is integrated forward in time to study the
dynamic behavior of the system. The ef®ciency of the reduced order model is
manifested by preserving the lower or the signi®cant modes of the original
system while accounting for the inertia coupling effects. Therefore, the developed
model provides an ef®cient tool for dynamic analysis of rotor-bearing systems,
and validates the use of reduced order modal equations for complex rotor
systems.
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APPENDIX

The nodal co-ordinate vector {e} is given by

feg � fvi, wi, bi, gi, fi, vj, wj, bj, gj, fjgt, �A1�

where v and w are the transverse deformations in the Y and Z directions, b, g
and f are rotational deformations about Y, Z, and X, respectively. The subscript
i represents the left node of the shaft element and j represents the right node of
the shaft element.
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The translation of a point internal to the element can be aproximated by

v�x, t�
w�x, t�
� �

� �Nv�x��fe�t�g � Nvv�x�
Nvw�x�
� �

fe�t�g

� Nv1 0 0 Nv2 0 Nv3 0 0 Nv4 0

0 Nv1 ÿNv2 0 0 0 Nv3 ÿNv4 0 0

� �
fe�t�g:

�A2�
The rotation of a typical cross-section of the element is approximated by

b�x, t�
g�x, t�

� �
� �Nb�x��fe�t�g � Nbb�x�

Nbg�x�
� �

fe�t�g

� 0 ÿNb1 Nb2 0 0 0 ÿNb3 NB4
0 0

Nb1 0 0 Nb2 0 Nb3 0 0 Nb4 0

� �
fe�t�g:

�A3�
The torsional de¯ection of a typical cross-section of the element is

approximated by

f�x, t� � �Nf�x��fe�t�g � �0 0 0 0 Nf1
0 0 0 0 Nf2

�fe�t�g: �A4�
The individual shape functions are as follows:

Nv1 �
1

1� F
�1ÿ 3x2 � 2x3 � F�1ÿ x��, �A5�

Nv2 �
l

1� F
xÿ 2x2 � x3 � F

2
�xÿ x2�

� �
, �A6�

Nv3 �
1

1� F
�3x2 ÿ 2x3 � Fx�, �A7�

Nv4 �
l

1� F
ÿx2 � x3 � F

2
�ÿx� x2�

� �
, �A8�

Nb1 �
6

l�1� F� �x
2 ÿ x�, �A9�

Nb2 �
1

1� F
�1ÿ 4x� 3x2 � F�1ÿ x��, �A10�

Nb3 �
6

l�1� F� �xÿ x2�, �A11�
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Nb4 �
1

1� F
�ÿ2x� 3x2 � Fx�, �A12�

Nf1
� 1ÿ x, �A13�

Nf2
� x: �A14�

The transverse shear effect is F=(12EI)/(kAGl2) and x=x/l.
The non-zero elements of the time dependent matrix [Me] are as follows:

�Me�5,1 �
Ii

420l 2�1� F�2 f6wj pat 1 ÿ lbi pat 2 ÿ lbj pat 3 ÿ 6wi pat 1g, �A15�

�Me�5,2 �
ÿIi

420l 2�1� F�2 f6vj pat 1 � lgi pat 2 ÿ lgj pat 3 ÿ 6vi pat 1g, �A16�

�Me�5,3 �
Ii

840l 2�1� F�2 f2vj pat 2 � lgi par 2 ÿ lgj par 3 ÿ 2vi pat 2g, �A17�

�Me�5,4 �
ÿIi

840l 2�1� F�2 f2wj pat 2 ÿ lbi par 2 ÿ lbj par 3 ÿ 2wi pat 2g, �A18�

�Me�5,6 � ÿ�Me�5,1, �A19�

�Me�5,7 � ÿ�Me�5,2, �A20�

�Me�5,8 �
Ii

840l�1� F�2 f2vj pat 3 � lgi par 2 � lgj pa 1 ÿ 2vi pat 3g, �A21�

�Me�5,9 �
ÿIi

840l�1� F�2 f2wj pat 3 ÿ lbi par 2 ÿ lbj pa 1 ÿ 2wi pat 3g, �A22�

�Me�10,1 �
Ii

420l 2�1� F�2 f6wj pt 1 ÿ lbi pt 2 ÿ lbj pt 3 ÿ 6wi pt 1g, �A23�

�Me�10,2 �
ÿIi

420l 2�1� F�2 f6vj pt 1 � lgi pt 2 � lgj pt 3 ÿ 6vi pt 1g, �A24�

�Me�10,3 �
Ii

840l�1� F�2 f2vj pt 2 ÿ lgi p2 � lgj p1 ÿ 2vi pt 2g, �A25�
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�Me�10,4 �
ÿIi

840l�1� F�2 f2wj pt 2 � lbi p2 ÿ lbj p1 ÿ 2wi pt 1g, �A26�

�Me�10,6 � ÿ�Me�10,1, �A27�

�Me�10,7 � ÿ�Me�10,2, �A28�

�Me�10,8 �
Ii

840l�1� F�2 f2vj pt 3 � lgi p1 � lgj p2 ÿ 2vi pt 3g, �A29�

�Me�10,9 �
ÿIi

840l�1� F�2 f2wj pt 3 ÿ lbi p1 ÿ lbj p2 ÿ 2wi pt 3g �A30�

where

pat 1 � 18d1 � 9d2 � 5d3 � 3d4 � 42,

pat 2 � 6d1�7Fÿ 2� � 9d2�2Fÿ 1� � 3d3�3Fÿ 2� � d4�5Fÿ 4� � 126F,

pat 3 � 6d1�7Fÿ 2� � 3d2�8Fÿ 1� � 15d3F� d4�10F� 1� � 42�2Fÿ 1�,
par 2 � 2d1�14F2 ÿ 14Fÿ 1� � d2�14F2 ÿ 14Fÿ 1� � d3�8F2 � 8Fÿ 1�

� d4�5F2 ÿ 5Fÿ 1� � 14�5F2 ÿ 5Fÿ 1�,
par 3 � ÿ6d1�7F2 � 2� ÿ d2�14F2 ÿ 8F� 5� ÿ 3d3�2F2 ÿ 2F� 1�

ÿ d4�3F2 ÿ 4F� 2� ÿ 21�10F2 � 8F� 5�,
pa 1 � 6d1�7F2 � 2� � d2�28F2 � 8F� 7� � 5d3�4F2 � 2F� 1�

� d4�15F2 � 10F� 14� � 14�5F2 ÿ 2F� 2�,
pt 1 � 24d1 � 15d2 � 10d3 � 7d4 � 42,

pt 2 � 6d1�7Fÿ 5� � 3d2�8Fÿ 7� � 15d3�Fÿ 1� � d4�10Fÿ 11� � 42�2Fÿ 1�,
pt 3 � 12d1�7F� 1� � 15d2�4F� 1� � 15d3�3F� 1� � 7d4�5F� 2� � 126F,

p1 � 6d1�7F2 ÿ 7Fÿ 2� � d2�28F2 ÿ 28F11� � 10d3�2F2 ÿ 2Fÿ 1�
� 3d4�5F2 ÿ 5Fÿ 3� � 14�5F2 ÿ 5Fÿ 1�,

p2 � 4d1�ÿ7F2 � 7Fÿ 4� ÿ d2�14F2 ÿ 20F� 11� ÿ 2d3�4F2 ÿ 7F� 4�
ÿ d4�5F2 ÿ 10F� 6� ÿ 14�5F2 ÿ 2F� 2�:
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